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Giant resonances and giant resonances built on other giant resonances in nuclei are observed
with very large cross sections in relativistic heavy ion collisions. A theoretical effort is un-
derway to understand the reaction mechanism which leads to this process, as well as a better
understanding of the microscopic properties of multiphonon states, e.g., their strength, energy
centroids, widths and anharmonicities.

1 Giant Resonances

1.1  Single giant resonances

Giant resonances in nuclei were first observed in 1937 by Bothe and Gentner ! who obtained an
unexpectedly large absorption of 17.6 MeV photons (from the “Li(p,7) reaction) in some targets.
These observations were later confirmed by Baldwin and Klaiber (1947) with photons from a
betatron. In 1948, Goldhaber and Teller 2 interpreted these resonances (called isovector giant
dipole resonances (IVGDP)) with a hydrodynamical model in which rigid proton and neutron
fluids vibrate against each other, the restoring force resulting from the surface energy. Stein-
wendel and Jensen ® later developed the model, considering compressible neutron and proton
fluids vibrating in opposite phase in a common fixed sphere, the restoring force resulting from
the volume symmetry energy. The standard microscopic basis for the description of giant reso-
nances is the random phase approximation (RPA) in which giant resonances appear as coherent
superpositions of one-particle one-hole (1plh) excitations in closed shell nuclei or two quasipar-
ticle excitations in open shell nuclei (for a review of these techniques, see, for example, ref. 4).
The isoscalar quadrupole resonances were discovered in inelastic electron scattering by Pitthan
and Walcher (1971) and in proton scattering by Lewis and Bertrand (1972). Giant monopole
resonances were found later and their properties are closely related to the compression mod-
ulus of nuclear matter. Following these, other resonances of higher multipolarities and giant
magnetic resonances were investigated. Typical probes for giant resonance studies are (a) 7’s
and electrons for the excitation of IVGDR, (b) a-particles and electrons for the excitation of
isoscalar giant monopole resonance (ISGMR) and giant quadrupole resonance (ISGQR), and (c)
(p, n), or (*He, t), for Gamow-Teller resonances, respectively.

1.2  Multiphonon resonances

Inelastic scattering studies with heavy ion beams have opened new possibilities in the field (for
a review of the recent developments, see ref. ®). A striking feature was observed when either the
beam energy was increased, or heavier projectiles were used, or both®. This is displayed in figure
1, where the excitation of the GDR in ?°®Pb was observed in the inelastic scattering of 17O at
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Figure 1: Experimental cross sections in arbitrary units for the excitation of 2°6Pb targets by 'O (22.A MeV
and 84.A MeV) and by *®Ar (95.A MeV), as a function of the excitation energy.

22 MeV /nucleon and 84 MeV /nucleon, respectively, and *°Ar at 95 MeV /nucleon . What one
clearly sees is that the ‘bump’ corresponding to the GDR at 13.5 MeV is appreciably enhanced.
This feature is solely due to one agent: the electromagnetic interaction between the nuclei. This
interaction is more effective at higher energies, and for increasing charge of the projectile. In
ref. 9 it was shown that the excitation probabilities of the GDR in heavy ion collisions approach
unity at grazing impact parameters. It was also obtained that, if the DGDR (double GDR), or
GDR? (i.e., a GDR excited on a GDR state), exists then their excitation cross sections in heavy
ion collisions at relativistic energies are of the order of hundreds of millibarns. The calculation
was based on the semiclassical approach, appropriate for heavy ion scattering at high incident
energies, and the harmonic oscillator model for the giant resonances. The semiclassical model
treats the relative motion between the nuclei classically while quantum mechanics is used for
the internal degrees of freedom. In the harmonic picture for the internal degrees of freedom the
GDR is the first excited state in a harmonic well, the DGDR is the second state, and so on. In
ref. 10 it was shown that the excitation probabilities and cross sections are directly proportional
to the photonuclear cross sections for a given electric (E) and magnetic (M) multipolarity. For
an impact parameter b, excitation energy E , and a multipolarity 7A (m = E or M, A = 1, 2, 3,
-++) the excitation probabilities are given by

Poa(B,) = 2 Noa (B, D)o (B) (1)

where ¢™*(E) is the photonuclear cross sections for the photon E and multipolarity 7A. The

gl
total photonuclear cross section is ¢, (E) = >, UZ/T’\(E). In the semiclassical approach, the
equivalent photon numbers N;(E,b) are given analytically °. A quantum mechanical deriva-
tion of the excitation amplitudes in relativistic Coulomb excitation shows that equation (1) can
also be obtained by using the saddle-point approximation in the DWBA integrals !'. The to-
tal Coulomb excitation cross sections are then obtained by an integration of equation (1) over
the impact parameter b, including a factor, T'(b), which accounts for the strong absorption at
small impact parameters: o,\(E) = 27 [db b T'(b)P;\(E,b). The total number of equivalent
photons n;\(E) = 27 [db b Ny\(E,b) is given in 0. The cross section for the excitation
of a giant resonance is obtained from these expressions, by using the experimental photonu-
clear absorption cross section for ¢™*(E) in equation (1). One problem with this procedure

gl
is that the experimental photonuclear cross section includes all multipolarities with the same



weight: o™ (E) = 32, UZ;)‘(E), while the calculation based on equation (1) needs the isolation
of UZ;’\(E). This can only be done marginally, except in some exclusive measurements. Gen-
erally, one finds in the literature the (v, n), (7, 2n), and (y, 3n) cross sections, which include
the contribution of all multipolarities in the giant resonance energy region. A separation of
the different multipolarities can be obtained roughly by use of sum rules, or some theoretical
model for the nuclear response to a photoexcitation. Assuming that one has ag)‘(E) somehow
(either from experiments, or from theory), a simple harmonic model based on the Axel-Brink
hypotheses can be formulated to obtain the probability to access a multiphonon state of order
n. In the harmonic oscillator model the inclusion of the coupling between all multiphonon states
can be performed analytically . One of the basic changes is that the excitation probabilities
calculated to first-order, PI§'(E,b), are modified to include the flux of probability to the other
states. That is, for the first harmonic state,

PoA(E,b) = PRH(E, b exp {~Pi'(b) } 2)

where P1$¢(b) is the integral of P1§!(E, b) over the excitation energy E. In general, the probability

to reach a multiphonon state with the energy E(™ from the ground state, with energy E(©) is
obtained by an integral over all intermediate energies

P (B™ b) = %exp{—P;it(b)} / dEM-VgE™=2) ... qp®)

PRU(E™ — "D 0)PH(EMY — B, 0) - PRU(EW — B b).(3)

X

The character and spin assignment of the multipolarity A\* depends on how the intermediate
states couple with the electromagnetic transition operators. For example, in the case of the
DGDR (GDR? ), assuming a 0" ground state and excluding isospin impurities, the final state
has either spin and parity 0T or 27, respectively. A simpler reaction model than the one above
can be obtained by assuming that all states can be approximated by a single isolated state. For
example, we can assume that the photoabsorption cross sections in the range of the GDR is
due to a single state with energy equal to the centroid energy of the GDR exhausting the whole
excitation strength. Then the multiphonon states are sharp and equidistant. Eq. (3) becomes

P () = L IPRO exp {~P0)} @)

The above relation was used to calculate the cross sections for the excitation of the GDR, GDR?,
GDR?, ISGQR and IVGQR in '3Xe, respectively, for collisions with Pb nuclei as a function of
the bombarding energy, as shown in figure 2. Each resonance is considered to be a single state
exhausting 100% of the respective sum rule. Also shown in the figure is the geometrical cross
section, (GC), o ~ W(A}D/?’ + Aéw/g)2 fm?2 . The cross sections for the excitation of the GDR? is
large, of the order of hundreds of mb. Much of the interest in looking for multiphonon resonances
relies on the possibility of finding exotic particle decay of these states. For example, in ref. 1°
a hydrodynamical model was used to predict the proton and neutron dynamical densities in a
multiphonon state of a nucleus. Large proton and neutron excesses at the surface are present in
a multiphonon state. Thus, the emission of exotic clusters from the decay of these states are a
natural possibility. A more classical point of view is that the Lorentz contracted Coulomb field
in a peripheral relativistic heavy ion collision acts as a hammer on the protons of the nuclei
10 This (collective) motion of the protons seems only to be probed in relativistic Coulomb
excitation.

Despite all the advantages of relativistic Coulomb excitation, the DGDR was first found
in pion scattering at the Los Alamos Pion Facility 2. In pion scattering off nuclei the DGDR
can be described as a two-step mechanism induced by the pion-nucleus interaction. Only about
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Figure 2: Theoretical cross sections for the excitation of the GDR, ISGQR, IVGQR, GDR? and the GDR? , in
the reaction 2%®Pb + 2°®Pb, as a function of the bombarding energy.

five years later, the first Coulomb excitation experiments for the excitation of the DGDR were
performed at the GSI facility in Darmstadt/Germany '®!4. One of these experiments observed
the neutron decay channels of giant resonances excited by relativistic projectiles. The excitation
spectrum of relativistic 136Xe projectiles incident on Pb were compared with the spectrum
obtained in C targets. A comparison of the two spectra immediately proved that the nuclear
contribution to the excitation is very small. Another experiment '* dealt with the photon decay
of the double giant resonance. The advantages of relativistic Coulomb excitation of heavy ions
over other probes (pions, nuclear excitation, etc.) was clearly demonstrated in several other GSI
experiments 13141617

2 Energy, width and strength of the DGDR

Experimentally '8, it was found that the energy of the DGDR agrees with the harmonic pre-
diction, i.e., that its energy should be twice the energy of the GDR, although small departures
from this prediction were seen, especially in pion and nuclear excitation experiments. The width
of the DGDR seems to be v/2 times that of the GDR, although a value equal to 2 is not ruled
out completely. An unexpected result was obtained for the ratio between the measured cross
sections and the calculated ones. This seems to be strongly dependent on the experimental
probe. The largest values of o¢yp/04, come from pion experiments, yielding up to a value of 5
for it. In Coulomb excitation experiments this ratio was initially 1314 of the order of 2.

2.1 Width of the DGDR

In a microscopic approach, the GDR is described as a coherent superposition of one-particle
one-hole states. One of the many such states is pushed up by the residual interaction to the
experimentally observed position of the GDR. This state carries practically all of the E1 strength.
This situation is simply realized in a model with a separable residual interaction. We write
the GDR state as (one phonon with angular momentum 1M) |1,1M >= AJ{M|O >, where
A‘I v 1s a proper superposition of particle-hole creation operators. Applying the quasi-boson
approximation we can use the boson commutation relations and construct the multiphonon
states (N-phonon states). An N-phonon state will be a coherent superposition of N-particle N-
hole states. The width of the GDR is essentially due to the spreading width, i.e., to the coupling



to more complicated quasi-bound configurations. The escape width only plays a minor role. Let
us take a simple model for the strength function'®. A state |a > (i.e., a GDR state) is coupled by
some mechanism to more complicated states | >. For simplicity we assume a constant coupling
matrix element V,, =< a|V]a >=< a|V]a >= v. With an equal spacing of D of the levels |a >
one obtains a width T' = 2mv2/D for the state |a >. We assume the same mechanism to be
responsible for the width of the N-phonon state: one of the N-independent phonons decays into
the more complicated states |« > while the other (N - 1)-phonons remain spectators. We write
the coupling interaction in terms of creation (destruction) operators cl, (c,) of the complicated
states |a > as

V =v(Al ca + Aruch). (5)

For the coupling matrix elements vy, which connects an N-phonon state [N > to the state
|IN —1,a > (N-1 spectator phonons) one obtains

oN =< N —1,a|V|N >=v < N —1|A1y|N >=vVN, (6)

i.e., one obtains for the width I'y of the N-phonon state

2
v
Iy =2tN5 =NT. (7)

Thus, the factor N in (7) arises naturally from the bosonic character of the collective states. For
the DGDR this would mean I'y = 2I'y. The data points seem to favor a lower multiplicative
factor.

We can also give a qualitative explanation for a smaller I'y/T'; value. First we note that
the value I'y/T'; = 2 can also be obtained from a folding procedure, as given in equation (3).
If the sequential excitations are described by Breit-Wigner (BW) functions Py (E) with the
centroid £ and the width T', the convolution (3) yields a BW shape with the centroid at 2€ for
the DGDR and the total width of 2I'; . However, if one uses Gaussian functions (instead of
BW) for the shape of one-phonon states, it is easy to show that one also obtains a Gaussian
for the N-phonon shape, but with the width given by v/NT;. The latter assumption seems
inconsistent since the experimentalists use BW fits for the shape of giant resonances, which are
in good agreement with the experimental data. However, one can easily understand that the
result v/NT; is not restricted to a Gaussian fit. For an arbitrary sequence of two excitation
processes we have < E >=< E; + E» > and < E? >=< (E1 + E2)2 >; for uncorrelated steps it
results in the addition in quadrature (AFE)? = (AE1)? + (AE)?. Identifying these fluctuations
with the widths up to a common factor, we obtain for identical phonons 'y = v/2I';. The
same conclusion will be valid for any distribution function which, as the Gaussian one, has a
finite second moment, in contrast to the BW or Lorentzian ones with second moment diverging.
We may conclude that, in physical terms, the difference between I'y/T; = 2 and T'y/T; = /2
is due to the different treatment of the wings of the distribution functions which reflect small
admixtures of remote states.

2.2  Strength of the DGDR

Microscopically, the harmonic picture is accomplished within the RPA approximation. The
excited states of the nucleus are described as superpositions of particle-hole configurations with
respect to the ground state. The multiphonon resonances are built using products of the 1~
resonance states, yielding 0T and 2% double phonon states. The interaction with the projectile
is described in terms of a linear combination of particle-hole operators weighted by the time-
dependent field for a given multipolarity of the interaction. Since the time-dependent Coulomb
field of a nucleus does not carry monopole multipolarity, the DGDR states can be reached via
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Figure 3: Occupation probability of the ground state, |ao|?, and of the GDR, |a1|?, for the reaction *°®Pb +

208Ph at 640.A MeV, as a function of the reaction time. The reaction time is given in terms of the adimensional

quantity yvt/b, with b equal to the impact parameter in the collision. The broken curves are the predictions of
perturbation theory, while the full curves are the predictions of coupled—channels calculations.

two-step E1 transitions and direct E2 transitions (for a 07 ground state). Early calculations
failed to explain the experimental data.

There seems to be two possible reasons for oezp/oy, # 1; (a) either the Coulomb excitation
mechanism is not well described, or (b) the response of the nucleus to two-phonon excitations
is not well known.

Many authors studied the effects of the excitation mechanism of the DGDR. In ref. 20 the
cross sections were calculated using second-order perturbation theory. It was found that the
theoretical values were smaller than the experimental ones by a factor of 1.3 — 2. However, it
was suggested ! that second-order perturbation theory is not adequate for relativistic Coulomb
excitation of giant resonances with heavy ions and that it is necessary to perform a coupled
channels calculation. We can see this more clearly in figure 3, taken from 22, where a coupled-
channels study of multiphonon excitation by the nuclear and Coulomb interactions in relativistic
heavy ion collisions was performed. The figure shows the probability amplitude to excite the
GDR in 208Pb, |a|?, and the occupation probability of the ground state, |ag|?, for a grazing
collision of 28Pb + 208Pb at 640 MeV /nucleon. The broken curves are the predictions of the
first-order perturbation theory. We see that the asymptotic excitation probability of the GDR is
quite large ( 40%). In first-order perturbation theory the occupation probability of the ground
state is kept constant, equal to unity. Obviously, one greatly violates the unitarity condition in
this case. An appropriate coupled-channels calculation (full curves) shows that the ground-state
occupation probability has to decrease to meet the unitarity requirements, while the excitation
probability of the GDR is also reduced slightly for the same reason. In ref. 22 it was shown that
a good coupled-channels calculation does not need to account for the exact coupling equations
in all channels. The strongest coupling, responsible for the effect observed in figure 3 is the
coupling between the ground state and the GDR states. This has to be treated exactly within
a coupled-channels calculation. The coupling between the GDR and the other states (including
the DGDR, IVGQR, ISGQR, etc.) can be treated perturbatively.

The results of?? showed appreciable dependence of the excitation cross sections of the DGDR
on the width of both the GDR and the DGDR for 2%%Pb + 208Pb at 640 MeV /nucleon. It was
also shown that the most favorable energies for the measurement of the DGDR corresponds to
the SIS energies at the GSI/Darmstadt facility.
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Figure 4: Photoneutron cross section for 2°*Pb. Experimental data (dots with experimental errors) are from ref.

[28]. The long-broken curve is the high-energy tail of the GDR, the short-broken curve is the IVGQR and the

curve with squares is their sum. The contribution of two-phonon states is plotted by a curve with triangles. The
full curve is the total calculated cross section.

2.3 Anharmonicities

Another possible effect arises from a shift of the energy centroid of the DGDR due to anharmonic
effects 3. In ref. 2 one obtained opgpr = 620, 299 and 199 mb for the centroid energies of
Epepr = 20, 24 and 27 MeV, respectively. This shows that anharmonic effects can play a big
role in the Coulomb excitation cross sections of the DGDR, depending on the size of the shift of
Epcpr- However, in ref. 20 the source for anharmonic effects were discussed and it was suggested
that it should be very small, i.e., APE = Epepr—2FEcpr ~ 0. The anharmonic behavior of the
giant resonances as a possibility to explain the increase of the Coulomb excitation cross sections
has been studied by several authors 2324 (see also ref. 25, and references therein). It was found
that the effect is indeed negligible and it could be estimated?® as AR E < Egpr/(504) ~ A=4/3
MeV. Recent studies?® of the reaction mechanism with anharmonic effects support the idea that
these are indeed very small.

2.4 Other routes to the DGDR

From the above discussion we see that the magnitude of the Coulomb excitation cross sections
of the DGDR can be affected due to uncertainties in: (a) strength, (b) width, (c) energies, or
(d) reaction mechanism. Cases (a) and (c) are the basis of the Axel-Brink hypothesis and we
have seen that a modification of their values would only be considered seriously if anharmonic
effects were large, which does not seem to be the case. Case (b) is an open question. Microscopic
calculations ?* have shown that, taking into account the Landau damping, the collective state
splits into a set of different 1; states distributed over an energy interval, where ¢ is the order
number of each state. A further fragmentation of the 1; states into thousands of closed packed
states, is obtained by the coupling of one- and two-phonon states. This leads to a good estimate
of the spreading width of the GDR. However, the DGDR states were obtained by a folding
procedure:

‘[12_ ® 12-_/](]#:0-‘,-,1-‘,-724— >yp= Z (1m1m’|JM)|1Z-_ >m |1z_, > - (8)

m,m/’

The width of the DGDR is thus fixed by the width of the GDR. It is therefore impossible
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Figure 5: The contribution for the excitation of two-phonon 17 states (long-broken curve) in first-order pertur-
bation theory, and of two-phonon 0 and 27 DGDR states to second-order (short-broken curve). The total cross
section (for 2°®Pb(640.A MeV) + 2°®Pb) is shown by the full curve.

to make any quantitative prediction for the width of the DGDR, other than saying that v/2 <
I'pepr/Tepr < 2. Thus, we return to the discussion of the reaction mechanism, and how it
could affect the magnitude of the cross sections. The nuclear excitation of giant resonances
is very small in magnitude compared with Coulomb excitation in collisions with heavy ions at
relativistic energies 22. In ref. 22 it was shown that the nuclear-Coulomb interference is also a
small effect.

In ref. 27 the contribution of non-natural parity 17 two-phonon states were investigated in a
coupled-channels calculation. The diagonal components [1;” ®1;];+ are forbidden by symmetry
properties but non-diagonal ones [1; ® 1;/];+ , may be excited in the two-step process bringing
some “extra strength” in the DGDR region. Consequently, the role of these non-diagonal compo-
nents depends on how strong the Landau damping is. A coupled-channels calculation found that
the contribution of the 17 states to the total cross section is small. The reason for this is better
explained in second-order perturbation theory. For any route to a final magnetic substate M, the
second-order amplitude will be proportional to (001u|11)VE1,. 01— X (1plp|IM)VEy,1- o1+ +
(@ <> p'), where Vi, i ¢ is the py-component of the interaction potential (for a spin-zero ground
state, p is also the angular momentum projection of the intermediate state). Assuming that
the phases and the products of the reduced matrix elements for the two sequential excitations
are equal, we obtain Vg1, 051~ X Vi 1-51+ = Ve 01— X Veiy,1-—1+- Thus, under these
circumstances, and since (001x|lp) = 1, we get an identically zero result for the excitation
amplitude of the 17 DGDR state as a consequence of (1ulu|1M) = —(1p'1u|1M).

We note that multiphonon states can be obtained by coupling all kinds of phonons. Each
configuration [AT' ® A3%] can be obtained theoretically from a sum over several two-phonon states
made of phonons and of complicated states with a given spin and parity AT', A5” , and different
RPA root numbers i; , i2 of their constituents. The cross sections can be obtained accordingly:

o(IN @ AF]) = X o (AT (i) @ A* (i2)). (9)

1,82

As an example, in ref. 2 the total number of two-phonon 1~ states generated in this way was
about 10°. The absolute value of the photoexcitation of any two-phonon state under considera-
tion is negligibly small but altogether they produce a sizeable cross section. The 1~ two-phonon
states obtained in ref. 2® were used to calculate their contribution to the (y,n) cross section
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Figure 6: Deviation of the experimental results from the harmonic oscillator prediction for the energy, width, cross
section, ratio between the decay by emission of two gammas, and of the one—mneutron decay width, respectively.

in 208Pb, via direct E1 excitations. This is shown in figure 4. Experimental data (dots with
experimental errors) are from 2. The long-broken curve is the high-energy tail of the GDR, the
short-broken curve is the IVGQR and the curve with squares is their sum. The contribution of
two-phonon 17 states is plotted by a curve with triangles. The full curve is the total calculated
cross section. Thus, already at the level of photonuclear data the contribution of two-phonon 1~
states is of relevance. Here they are not reached via two-step processes, but in direct excitations.
Since the energy region of these states overlap with that of the DGDR, in Coulomb excitation
experiments they should also contribute appreciably. In fact, it was shown ?® that their contri-
bution to the total cross section for 2%8Pb + 298P (640.A MeV) in the DGDR region is of the
order of 15%. In figure 5 we show the contribution of the excitation of two-phonon 1~ states
(long-dashed curve) in first order perturbation theory, and for two-phonon 0™ and 2+ DGDR
states in second-order (short-dashed curve). The total cross section (for 2°8Pb (640.A MeV) +
208PD) is shown by the solid curve.

3 Present situation and perspectives

Presently, experiments tell us that the harmonic model reproduces the cross section for the GDR
quite well, but it gives smaller values than the measured cross sections by as much as 30%. In
figure 6 the present situation on our knowledge of the energy, width, excitation cross section,
branching ratio for gamma to neutron emission, and the neutron emission width, respectively,
is shown in comparison with calculations based on the simple harmonic picture. We see that
the theory-experiment agreement is much better than that obtained in the pioneer experiments.
As we have seen in this short review there are several effects which compete in the excitation of
double giant resonances in relativistic Coulomb excitation. These effects were discovered in part
by the motivation to explain discrepancies between the harmonic picture of the giant resonances
and the recent experimental data. We cannot say at the moment how much we have progressed
towards a better understanding of these nuclear structures, as some controversies still remain
in the literature (see, for example, 3°). Recent studies of giant resonances in ultra-relativistic
collisions have been performed at CERN 3! and Brookhaven 32. Since the nuclei fragment after
the excitation to a giant resonance, this process can be used for beam monitoring as well2. The
field is just in its infancy and important experimental and theoretical progress will occur in the



near future.
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